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Stillwater. OK 74078
and
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INTRODUCTION 
HH

Side-chain liquid crystalline polymers (SCLCPs). especially+Jn i

ily fabricated into thin films. SCLCPs with conjugated x electron donor [Ht) I II acceptor substituents at the ends of delocalized electron systems have 0
ge second order nonlinear optical (NLO) coefficients. X(2).2 commonly -J /asured b1 second harmonic generation (SHG). the doubling of the 1.- 0

lunyI lawe beam, Since second order NLO polarizability requires Iioncentrosym~metric structure, poled glassy polymers, and acentricugmuir-Blodgett (LB) films are promising approaches to high-efficiency I R. -N(CH~h HPS-1, n. 50. m -0G materials. I CPS.4, n S. Mn- 8In this paper, we report the preparation. characterization, and Inolayer behavior of liquid crystalline polysiloxanes having polarized I-Ný 0Crw S2 0benes in the side chains, 
CPS-2. n 9,. inS

RESULTS AND DISCUSSION Fig. 1. Structures of monomners. homopolysiloxanes, and
copolysiloxanes.

ntheses
Monomers, I and 2, were synthesized by transesterification of the I Phase Transitionsbene-methyl esters3 with to-undecylenyl alcohol in the presence of I Phase transitions of the monomers and the polysiloxanes measur-(a1cac2. Hydosilylation of the monomers with either Iby DSC and microscopy are reported in Table If. The phase assignmeiy(hydromnethyl)siloxane or a copolymer of 50% (hydromevthyl)siloxane.- aebsdo odrXrydfrcto Wplrzn pia irsoS (dimethyl)siloxane in dry toluene Was catalyzed by chloroplatinic acid are based paon powermX-rayitureofaction and polamrszn optic obal ne m'rsqopropyl alcohol. An equivalent amount of triethylamine was added to m hicrotcopiy.o Thempertfawstures ofralof the plmersoa werte iobtainecatalyst solution tonurlz h C.wihohriewud liquid phase were too small to observe in the DSC.tonate the amino group of the monomers. Even after reflux ing the

-ture% for 48 hrs. a small residual 2160 ciyu I band remained in the IR Table IL. Phase Transition Temperatures of Monomers and Polysiloxan,ctrum of the mixture, so I-octene was added to try to consume
lamning Si-H groups. The 29Si NMR spectra of the final side-chain Sml hs rniintmeauel C(M clml-1ysiloxsnes showedno peak at -37 ppm for the Si-H groups. However. I Sml hs rniintmeaue, 0  A-.IclmltNMR spectra showed a small peak at 4.7 ppm for Si-H groups. HI'S-.howed about 9% while the other polymers hsve about 1% )f unreacted IC 146H groups present in the final structure. HI'S- I was insoluble in organic CP'S. I G -35 C 146 (7.06) SA 183h,vents at room emperature but soluble in hot toluene and chloroform. H PS. I C 167 (4.84) N 215b I'IS-i was purified by precipitation from toluene siv times. CPS-I,

`S-2 and CPS-2 were soluble in organic solvents at room temperature 1 2 C 109 (0.54) SB 1720(1.2) SA 191were purified by precipitation six or Seven times from chloroform into I CI'S-2 G -43 C 112 (0.27) SB 182 (1.04) SA 220WhanoI. (JPC analyses of the molecular weights based on polystyrene HPS-2 C 110(0.15) S9 c 192 (1.0) N 2314tidards and residual moanomer contents are reported on Table 1. OPC _____________________________Il~es using polystyrene standardis undlerestimate the molecular weights 6 C a orthorhombic crystal or smectic E. G - glass. I - isotropic, SA;CLCPs because the hydrodynamic volume of a comb-like polymer isJ
11cr than that of polystyrene of the same moclecular weight.' 11 smectic A, N w nematic. Sg w smnectic B. b Transition temperatures were

Idetermined by microscopy. All other data is from DSC. c Possibly anlie I. OPC Analyses of Side-Chain Polysiloxanes I ordeved nernusic.

There was no evidence of any glass transition for HPS-1 in it)lymer Mn Mw MvWMn % mlonomer Irange -123 OC to 146 OC. This is likely due to the small volume fraction~
the siloxane backbone, making the glass transition too weak to detect. WiPS-1 6.800 9.800 1.4 <1 strong dipole-dipole interactions between the mesogenic side chains, a,P5-2 59,400 37.600 1.9 2 long flexible methylene spacer chains, the polymer behaves semicrystalIt,PS-2 19,00 7.60 19 2rather than glassy. Annealing of HI'S-I, even just below the isotropizatifPS-2 7.200 10.500 1.5 I temperature, did not give a recognizable texture. Powder X-ray diffractit
of HI'S- I at 195 OC showed a diffuse peak in the wide angle region andr

Isharp peaks in the small angle region, characteristic of a nematic: phase.
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CPS-I showed a weak. wide glass transition, -35 OC. and only one REFERENCES
sophase The X-ray pattern at 172 OC showed sharp peaks in the small
-le region. indicative of smectic layers. and a diffuse peak at the wide 1. McArdle. C. B.. Ed. Side Chain LiqWu Crystal Polymers: Blackle ar
,le region. characteristic of the SA phase. Only a fine grained texture was I Sons: Glasgow, U.K.. 1989.
ierved by polarizing microscopy. 2. Prasad, P. N.; Williams. D. J. Introduction to Nonlinear Optical Eife

HPS-2 had both a high temperature nematic phase and an ordered in Molecules and Polymerr John Wiley & sons. Inc.: New York,
ise initially assigned as SB from the powder X-ray diffraction pattern at 1991.
) oC. However. this phase showed no reflections in the small angle 3. Zhao. M.: Bautista, M.: Ford. W. T. Macromolecules. 1991. 21 Q'
ion. which meant the absence of layers. Possibly this mesophase is an 4. Duran. R.; Strazielle. C. Macromolecules. 1987. 20. 2853.
tered nematic with hexagonal structure. Friedzon and coworkers5  5. Friedzon, Y. S.; Boiko. N. I.; Shibaev, V. P.; Plate, N. A. as rej
oned a similar X-ray pattern and suggested that it was due to a new by Noel. C. In Side Chain Liquid Crvstal Polymers; McArdle. C B
ise. N9. in which the mesogenic groups were packed in a hexagonal Ed.; Blackie and Sons: Glasgow. U.K., 1989; p 184.
ay but without tanalational order in the direction of their long axes. No
:roscoplc texture was obtained for HPS-2.

In addition to a glass transition and a high temperature SA phase, g0o."S-2 had a low temperature mesophase assigned a SB structure, because
powder X-ray diffraction pattern at 171 °C showed the typical sharp a

dks in the small angle region denoting the presence of layers and a strong b a CPS- I
irp peak in the wide angle region corresponding to '10 and 200 1 b CPS-2
lections. Microscopy of CPS-2 under crossed polarized light showed a '0 60- d c HPS-I
ical fan-shaped textu for the SA phase. j d HPS.2

Each polysiloxane exhibited a low temperature crystalline phase 0 c
ntified by X-ray diffraction patterns and reported in Table I1. Three I
trp peaks in the wide angle region correspond to 110. 200 and 210 I Z
lections. which are characteristic of an orthorhombic crystal. Sharp I 40"
iks in the small angle region mean the molecules are arranged in layers.
:se phases might be Sp, which also gives the three reflections in the wide -

:le region. To distinguish a smectic E phase from an orthorhombic I
stal. one must use an oriented sample for X-ray diffraction studies.

nolayers 20
Monolayers of the polysiloxanes were characterized by measurment

he film pressure, nl - mean molecular rea. A2. isotherm. In this work, I
an molecular area is defined as area per mesogenic repeat unit of the I
ysiloxane. The.room temperature isotherms in Fig. 2 were reproducible.
: curves obtained for HPS-I and CPS-. were smooth, without any 0
;ervable discontinuities. and showed no evidence of phase I 10 20 30 40 50 6
isormations. Upon extrapolation of the steeply sloping linear region to I 2o surface pressure, the intercept gives the area per molecule of a closely I Mma, i2
ked monolayer. The minimum stable areas per mesogenic polysiloxane
eat unit were -23 A2 and -34 A2 for HPS-I and CPS-I. respectively. Fig. 2. Surface pressure - area isotherms of polysiloxanes. Each

isotherms for HPS-2 and CPS-2 showed evidence of "phase compression took about I hr.
isitions" just above 30 A2 to about 50 A2. HPS-2 and CPS-2 gave the
ve mean molecular area per repeat unit, - 30 A2. Because side-chain
Vsiloxane films exhibited high viscosities, it was necessary to use a 32,
igmuir balance, rather than a Wilhelmy plate, to measure the surface I
ssure. The films can be compassed to about 40 mN/m with no apparent

Mlapse. The copolysiloxanes showed less hysteresis than the
imopolysiloxanes upon compression and subsequent expansion of the 30"
,onolayers. Further compression-expansion runs showed a much
,iproved hysteresis behavior for CPS-I and CPS-2. Fig. 3 shows the CPS-2
obarc surface area of HPS-2 and CPS-2 at 15 mN/in as a function of I
ne. Similarstablemonolayerbehaviorwasobservedat 15 mN/Im for the 0-4 28

er pollysiloxanes, There was a bigger decrease of fte mean molecular
s of HPS-I during the first 30 minutes than observed with CPS-I.
. same trend was observed with HPS-2 compared to CPS-2. The 2
reases of mean molecular area during the first 30 minutes were much 26
. with the dimethylaminostilbene polysiloxanes, HPS-I and CPS-I, j
i with the hexyloxypiperidinostilbene polysiloxanes. HPS-2 and CPS- ,. HPS-2
lue to the greater movement of the side-chain mesogen containing the
ible hexylptperdino prup.

Preliminary deposition experiments were performed on I
Irophobic. octadecyhtrlchlorosi lane-treated quartz slides at room
iperature. There was no deposition of the monolayers of the 22
ystloxanes onto a hydrophilic substrate. LB monolayers of CPS-* 00
e obtained with a transfer ratio of 0.3 during the first dip and a 40 80 12
reasing transfer ratio on succeeding dips. Monolayers of CPS-2 also
wed deposition, although the transfer ratio of the first dip was only 0.5. Time, mi
S-I and HPS-2 did no depotit onto the hydrophobic substrate. SI Fig. 3. Molecular area as a function of time at constant film pressure ofnowledge nt.Rs h This research was supported in parns by the Office of mN/m and room temperature.
iol Research. We thank Angie Thibodeaux for instruction on the
-volayer experiments.- [
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